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1 INTRODUCTION

There are numerous commercial codes available that numerically solve electric-field integral
equations (EFIE) for the current and scattered fields produced by an electromagnetic wave
incident on a perfectly conducting (PEC) scatterer. For research purposes and for certain
specialized geometries, however, it is often advantageous to have the flexibility and control
inherent in writing one’s own computer code. By far, the simplest approach for numerically
solving integral equations is to use the method of moments (MOM) with pulse basis functions
and point matching. Unfortunately, the EFIE, unlike the magnetic-field integral equation
(MFIE), cannot be solved accurately using pulse basis functions and point matching (as
demonstrated in Figure 5 below), and thus considerably more effort is required to write a
computer code for numerically solving the EFIE. (It can be shown that it is the higher-order
singularity of the EFIE kernel that prevents an accurate solution using pulse basis functions
and point matching.) For open scatterers or many thin bodies the solution to the MFIE is
inderminant or unstable, respectively, and it becomes necessary to use the EFIE. Moreover,
because confidence in numerical solutions is greatly enhanced by having two independent
numerical solutions that agree to within a certain accuracy, it is often highly desirable to
obtain the solution to the EFIE even if the MFIE is also applicable.

The main purpose of this report is to derive a low-order singularity electric-field integral
equation (LEFIE) that can be accurately solved using the MOM with pulse basis functions
and point matching. This LEFIE, whose kernel, like that of the MFIE, has no singularity
greater than that of the free-space Green’s function, is solved numerically for perfectly con-
ducting bodies of revolution (BORs) using pulse basis fucntions and point matching. Deriv-
atives of the current are approximated with finite differences using a quadratic Lagrangian
interpolation polynomial. This simple solution of the LEFIE is contingent, however, upon
the vanishing of a line integral that appears when the original EFIE is transformed to obtain
the LEFIE. This requirement generally restricts the simple applicability of the LEFIE to
smooth closed surfaces. Bistatic scattering calculations performed for scattering of a plane
wave by a prolate spheroid demonstrate that numerical results comparable in accuracy to
the conventional EFIE can be obtained with the LEFIE using pulse basis functions and
point matching, provided a higher density of points is used close to the ends of the BOR
generating curve to compensate for the use of one-sided finite difference approximations of
the first and second derivatives of the current.

The organization of the report is as follows. Section 2 contains the analysis of the low-
order singularity electric-field integral equation (LEFIE) solution of the body of revolution
(BOR) scattering problem. It is divided into several subsections beginning with the deriva-
tion of the general LEFIE in Section 2.1 and its restatement for a BOR in Section 2.2. The
solution of the LEFIE for a closed BOR using pulse basis functions and point matching is
outlined in Section 2.3. Detailed expressions for the elements of the Z matrices that multiply
the column vectors of the surface current expansion function coefficients to be determined
are derived in Section 2.4. The Z matrices are treated by expressing them as the sum of four
submatrices corresponding to each of the four terms under the integral sign in the LEFIE.
In Section 2.5 we obtain detailed expressions for the elements of the V' column vectors in
the right-hand side of the matrix equation formulation of the LEFIE. In Section 2.6 we ob-
tain expressions for the currents induced on the surface of a BOR by a transverse electric




(TE) and transverse magnetic (TM) linearly polarized plane wave in terms of the solution
to the LEFIE matrix equation, and in Section 2.7 expressions for the components of the far
scattered field are derived. Section 2.8 discusses the choice of the number of Fourier modes
that need to be used in the calculations. Section 2.9 treats the approximation of the current
derivatives that appear in the formulation of the LEFIE.

Section 3 contains numerical results of calculations performed with a computer program
written to implement and validate the solution of the LEFIE given in Section 2. A report
summary is given in Section 4.

2 ANALYSIS

2.1 Derivation of the Low-Order Singularity Electric-Field
Integral Equation

To derive the low-order singularity electric-field integral equation (LEFIE) we first derive
the ordinary electric-field integral equation (EFIE) [1]. On the surface S of a PEC scatterer
the total tangential electric field vanishes. The total field is expressed as the sum of the
incident field and the scattered field, so that

A(r) x E¥(r) = a(r) x [E™(r) + E*(r)] =0, ron § (1)

where Ef°(r) and E*(r) are the total and scattered electric fields, respectively, 1 is the unit
normal vector to the surface S at the position r, and f is assumed directed outward from
S. The scattered field can be expressed in terms of a vector potential A(r) and a scalar
potential ®(r) by ‘

E*(r) = —jwA(r) — V&(r) (2)
where
A(r) = po / K(r')G(r,r')dS’ | 3)
S
and 1
o) = f o(r')G(r, 1')dS". (4)

Here G(r,r') is the free-space Green’s function for harmonic time dependence exp(jwt) with
the frequency w > 0. That is

6o = G( ) = 2R ®)

where r and 1’ are the vectors to the field and source points respectively, K(r') is the electric
current on S to be determined, po and € are the permeability and permittivity of free space
respectively, k = w/c with ¢ the speed of light in free space, and ¢ is the surface charge
density given by

o(x) = ——jinfg ‘K(r') . (6)
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The operator V- is the surface divergence [2, Appendix 2, 18.]. Combining (1) and (2),
substituting (3), (4) and (6), letting the observation point r approach the surface S, and
dividing by the free-space impedance Z = (uo/€o)*/? we obtain

j A 2 ’ ! ! / ’ / ! __ ﬁ(r) inc
() x Z{ FK(E)G(r,x) ~ (Vs KE) VG, r)ds' = = x B™@). (1)

The “0” on the integral sign in (7) indicates that a small “principal area” isolates the
singularity of the Green’s function from the surface integration. The form of the EFIE in
(7) is conditional upon the choice of the principal area being a circle with the singular point
at its center (or another principal area that is adequately symmetric with respect to the
singular point) [3]. Equation (7) is the conventional form of the EFIE for the current K on
the surface S of a PEC scatterer.

The gradient operator acting on the free-space Green’s function in (7) results in a higher
order singularity, 1/| r — ' |?, instead of the 1/| r —r' | singularity for the free-space Green’s
function itself. What we want to do is to recast the conventional form of the EFIE into a
new form that has no singularity higher than that of the free-space Green’s function. To do
this we begin by writing the gradient operating on the free-space Green’s function as the
sum of the surface gradient Vs and the gradient in the normal direction so that (7) becomes

%ﬁ(r) x $IPKE)G(, ) ~ (Vs K0) V56l ) -
S

l‘, r) . ( I)]dS’ n(r) Emc( ) (8)

oG

(v K@) 25T

The term in (8) with the normal derlvatlve of G includes the cross product fi(r) x fi(r’) and

does not have a singularity higher than G itself at r = r’. Focusing on the surface gradient
term, we use the vector identity [2, Appendix 2, 26.]

Vs(AB) = AVsB + BVgA (9)
to write
(Vs -K)VsG = V[(Vis - K)G] - GV(V5 - K). (10)
We then use a Gauss integral theorem [2, Appendix 2, 43.] to obtain
f Vi[(Vs - K)GJdS' = — f J (Vs - K)Gi'dS' + / (Vs - K)Gri'|dc). (11)
In (11)
1 1
J =ty 12
BE 12

where R} and R}, are the principal radii of curvature at the surface point r/, and C is a set
of closed curves (defined below) on the surface of the PEC scatterer. The unit vector i/,
defined at each point on the curves comprising C, is in the tangent plane to the surface at
the point and perpendicular to the curve. Primes are used to denote dependence on the
source point r'.



Since (11) is the key step in obtaining a new form of the EFIE it is important to under-
stand the meaning of S and C in applying it. We assume that the surface S of a general
PEC scatterer can be divided into a finite number of open subsurfaces sharing bounding
curves in common with one another, such that on each subsurface the surface charge density
o(r') = —1/(jw) Vs - K(r'), its surface derivative, and J' are continuous and integrable, and
4’ and 1@’ are continuous. In applying (11) to the surface S of the PEC scatterer, S is to be
regarded as the superposition of these subsurfaces, and the surface and line integrations per-
formed separately for each subsurface with its bounding curve. The set of bounding curves
comprise C. The unit vector '’ on each of the bounding curves comprising C points away
from the subsurface it encloses. The surface of a. closed finite cylinder, for example, is to be
regarded as the superposition of three subsurfaces, the side cylindrical surface and the two
disks at either end. The surface of a sphere, a simple smooth scatterer, can be regarded as
the superposition of two hemispheres.

Combining (8) and (11) we obtain a new form of the EFIE with a self-term singularity
equal to that of the free-space Green’s function

%ﬁ(r) x f {[FK() + V5(Vs - K()) + J' (Vs - K(r)aE)Gr, r')
s

—(Vs- K(r’))—aGT(:;EQﬁ(r')}dS' — %ﬁ(r) X /(Vfg - K()G(r, ) (r')|dc|
c
_ fi(r) x E"e(r)
Zy

which, unlike the original EFIE in (7), is not conditional upon the shape of the principal
area used to isolate the singularity of the Green’s function.

Now our recasting of the conventional EFIE (7) into this new low-order singularity form
(13) is motivated by the desire to be able to solve the EFIE with the method of moments
using pulse basis functions and point matching. Therefore we would like to avoid the line
integral over C in (13). Assume that the surface S of the scatterer is closed and smooth
enough so that o(r') = —1/(jw)Vs - K(r'), its surface derivative, and J' are continuous
and bounded, and i and 1’ are continuous over S. Then (13) can be applied to any two
contiguous open surfaces (with a smooth bounding curve) comprising the closed surface, the
two line integrals over the common bounding curve of the two contiguous surfaces cancel,
and (13) reduces to

(13)

L) x F{IFKE) + V5(Vs- K() + J'(Ve - KEDAEGE)
S

~(v5 K@) XL aeyyas =

/

i(r) x Ee(r)

Zo )
If the scatterer has an open surface, edges, tips, or any boundary where o or J' become
singular or discontinuous, or fi’ and rh’ become discontinuous, the line integral over C cannot,

in general, be omitted and the numerical solution to the low-order singularity electric-field
integral equation (LEFIE) (13) may be more complicated than that of the original EFIE.

(14)
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Accordingly we will restrict our treatment of the LEFIE in this report to PEC scatterers
with closed smooth surfaces such as spheroids for which o, its surface derivative, and J' are
continuous and bounded, and ©iY and /'’ are continuous, so that the line integral over C' can
be omitted and the LEFIE takes the form (14).

2.2 LEFIE for a BOR

We seek to determine the surface current and the far scattered field of a perfectly electrically
conducting (PEC) closed body of revolution (BOR) excited by an incident plane wave.
The geometry of the BOR is shown in Figure 1. Circular cylinder coordinates (p, ¢, 2) are
employed with (p, c?), 2) denoting the corresponding unit vectors, and with the 2z axis chosen
as the axis of revolution. The origin of the circular cylindrical coordinate system lies on
the z axis but does not necessarily coincide with the lower pole of the BOR as in Figure
1. The coordinates (¢,¢), with ¢ the path length along the generating curve of the BOR
from the lower pole, form an orthogonal curvilinear system on the surface S of the BOR; the
corresponding unit vectors are (t ¢) Figure 2 shows the propagation vector k¢ = kkine of
the incident plane wave. The propagation vector is assumed to lie in the zz plane (¢ = 0),

with —kire making an angle of §*¢ with the positive z axis and with &, inc < () so that

k" = —k(sin 6% + cos §°2). (15)

Also shown in Figure 2 are the spherical polar angles of the fa,r field observation point

rfo" = (r, 879", ¢fo") and the associated unit vectors 8" and q.’) . For TM illumination the
incident electric field is given by

ainc

E"® = kZgexp(—jk™ - )0 (16)

while for TE illumination ine

E™ = kZgexp(—jk™ 1) . (17)

In (16) and (17) r is the vector from the origin to any point in space and the factor of kZo
is inserted to simplify the analysis.
For a BOR (14) can be replaced by the equivalent pair of equations

—t(r) }{{[sz(rHV (Vs K@) + J'(Vs - K(r)A()]G(r, ')

. Einc (r)

(75K XD apas = L7 (180)
and )
L3(e) - $URK() + V(Y- K(&)) + (Vs KENAEIG )
S
~(v5 - K@) 22 ae)as = 9(r) B(x) (18b)

Zy




Figure 1: Body of revolution and coordinate system.




Figure 2: Plane wave scattering by a body of revolution.




The LEFIE for a PEC scatterer with a closed smooth surface in (14) and for closed
smooth BORSs in (18), like the original EFIE in (7), produce a unique solution for the surface
current K except at frequencies equal to the resonant frequencies of the cavity formed by
the closed surface S of the scatterer. These spurious resonances can be eliminated from the
LEFIE in the same way they have been eliminated from the EFIE. For example, the LEFIE
can be combined with the magnetic-field integral equation [4] or added to a corresponding
LEFIE that is satisfied on a dual surface just inside the surface S of the scatterer [5]-[9]. To
concentrate on the subject of lowering the order of the singularity of the EFIE and not on the
details of these methods for eliminating spurious resonances, we shall choose frequencies in
our numerical examples that are sufficiently far from any cavity resonance to avoid numerical
instabilities.

2.3 Solution of the LEFIE by the Method of Moments

To solve the LEFIE (18) for the surface current K we begin by expanding K in a Fourier
series N

K(#,¢)= Y. [KLOOE.¢) + KEE)@)] . (19)

n=—N

The choice of the value of N is discussed in Section 2.8. To obtain separate integral equations
for each of the Fourier modes we multiply both sides of (18a) and (18b) by ™™, m =
0,+1,42,---, and integrate with respect to ¢ from —7 to . As will be seen below, the
integrands of the LHSs of (18a) and (18b) are of the form F(¢,t,¢' — $)ei™¥, if the dot
products of t and ¢ are taken inside the integral signs. Noting that dS' = pldt'd¢’ and
performing the integration with respect to ¢ from —7 to m as well as the integration with
respect to ¢ we then have

/d¢6_j7n¢/d¢lejn¢,F(t,t,,¢l—¢) — /d¢ej(n—m)¢/d¢lejn(¢'“¢)F(t,tl,¢/_¢)

= 276 / dge™? F(t, ¢, ¢) (20)

where the Kronecker delta &,,, equals 0 for m # n and equals 1 for m = n. The orthogonality
of the Fourier modes thus enables separate integral equations to be obtained for each Fourier
mode /™%,

Following the ¢ and ¢ integrations we approximate K} (¢') and K2(t') by pulse basis
functions defined as follows. The generating curve of the BOR is parametrized in terms of
¢, the distance along the curve measured from the lower pole of the BOR. For each value of
¢, the corresponding point on the generating curve is given by [o(t), 2(t)]. A set of M +1
points p¥,ph, - - -, Pir41, is chosen to discretize the generating curve with p} = (p},2}) the
lower pole of the generating curve corresponding to ¢ = 0, i1 = (Oh41) 2 +1) the upper
pole of the generating curve, and with t} > ¢;_,. The generating curve is approximated by
straight line segments between adjacent points. The midpoints of the approximating straight




line segments are given by

o & * *
(pi, zi) — (pz +2pi+1 , Z,; +2zi+1) . § = 1,2, e, M (21)

and the length of the it* straight line segment denoted by

d; = [(p:+1 — ) + (2 - z;-")2] " (22)

For calculation purposes the discretized generating curve then completely replaces the origi-
nal generating curve and the parameter ¢ now becomes the length along the discretized curve
from the lower pole instead of the length along the original generating curve from the lower
pole. Thus, for example, t(p}) = 0, t(p}) = d1, t(p}) = di + da, etc. A pulse basis function
pi(t) is defined as

_fo, t<tt>tr,
pilt) = { 1, #<t<ty, . (23)
Then
M
Ki(t) =Y KL(t)n(t) (24a)
i=1
and
M
KRty =Y KL(t)pi(t). (24b)
=1

A set of 2M equations for the 2M unknowns K% (t;), K2(t:), i = 1,2,---, M, is then obtained
by using point-matching: the LHS and RHS of the integral equations for each Fourier mode

are equated at t = ¢;, i = 1,2,---, M. This set of 2M equations can be expressed in matrix
form as 7] (2] , .
Zn Zn Kn Vn

[ [Z¢t] [Z¢¢] ] [ ¢ ] = I:V¢}, n=0,:i:1,:l:2,---,:i:N. (25)

In (25) the [Z29], p,q =t or ¢, are M x M matrices obtained from the LHS’s of (18a)and
(18b). The index p corresponds to the external dot product factor t or @, and the index ¢
corresponds to the ¢ or ¢ component of K. The i** row of [ZP9] corresponds to the value of
the observation point t;, and the jt* column of [Z?9] corresponds to KZ(¢;). The i** value
of the M x 1 vectors K¢ and K% equals K%(t;) and K¢(t;) respectively. The vectors V},
and V¢ on the RHS of (25) contain the values of the RHS’s of (18a) and (18b), respectively,
evaluated at t = ¢;, i = 1,2,- -+, M, following multiplication by e and integration with
respect to ¢ from —7 to 7.

2.4 Expressions for the Elements of the Z Matrices

Detailed expressions will now be obtained for the elements of the Z matrices. The contri-
bution of the dot product of t or d) with each of the four terms under the integral sign in
(18a) and (18a) will be considered in turn. Some useful relationships will first be established.




L,etting v and v’ be the angles measured positive clockwise from the positive 2z axis to t and
t respectively (see Fig. 3), it follows that

t = cosv(t)z + sinv(t)p = sin v(t) cos ¢ + sin v(t) sin ¢F + cos v(t)z (26a)
¢ = —sin ¢% + cos py (26b)

and similarly for t and &Sl; and hence that

i = (?), x t = cosv’ cos @'k + cosv'sin @'y — sinv'z (26¢)
so that

£ -t = sinv(t) sinv/ () cos(¢’ — ¢) + cosv(t) cosv'(t) (27a)
t-¢ = —sinv(t)sin(¢' — ¢) ' (27b)
& -t =sinv/(t') sin(¢' — ¢) (27¢)
$- & =cos(¢' - 9) (27d)
£ - A’ = sinvcosv’ cos(¢’ — @) — cosvsin v’ (27¢)

and R
¢ - it = cosv'sin(¢’ — ¢). (27f)

It is also simple to show that

! 1/2
|x = | = [p* + 57 — 200 cos(¢' — ¢) + (2 — )]

=[(o=p)2+ (z—2)+ 400 Sinz(d)’ 5 ¢)]1/2. (28)

Now let

"= f; / de™™*p(r) - / K2y Ki(t)e™ §(r')G(| r — 1’ |)dS’
S S "

=ik [ dgemp() - [ pat [ ap S KIS ANG(x =7 ), pra=tor.  (29)

where the integration with respect to ¢’ is over the length of the generating curve of the
BOR. Then, using (5),(28),(27a)-(27d), and (20) we obtain

It = jik? / dt' o' KL (¢')[sinvsinv'Gan(p, ¢, 2 — ') + cosveosv'Gra(p, o, 2 — 2)]  (30a)
P = —k? / dt' /' KL (¥) sinv/Gan(p, p', 2 — Z) (30b)

1% = k?sinv / dt KL (t)Ganlp, 2 — 2) (30c)
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generating curve
for the BOR

Figure 3: Defining geometry for the angle v in the pz plane.
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and

1* = 2 [ dtp K(t)Canlp.f2 = 2) (30d)
where .
Ginlp, 0,2 —2) = /GO(R) cos(ng')d¢’ (31a)
0
Can(p, 2= #) = [ GolR) cos(ng) cos 'dg (31b)
0
and .
Ganlprp, 2 — 2) = / Go(R) sin(n¢) sin ¢'d¢’ (31c)
0
with LR
o) = TR (31

and R =|r —r' | given by (28). In the arguments of the Gxn, k = 1,2, 3, the distances p
and z are functions of the observation point coordinate ¢, and p’ and 2’ are functions of the

source point coordinate ¢'. :
The contributions of the I to the Z?? matrices are then (see Section 2.3)

[Z,tlt]l;,‘j = jk2dj[Sil’l U; sin ij2,n(pi, pj, 2; — Zj) -+ cos v; cos 'Uleyn(pi, pj, Z; — Zj)] (32&)

(284145 = —Kk°d;p; sinv;Gan(pi, pj» 2 — %) | (32b)
[Z%)1,4; = K sinvid;p;Gan(pi, pj> 2 — 2;) (32¢)

and
(28115 = 3Kk*diGan(pi, Py 2 — 25)- (32d)

In (32) the subscripts ¢ and j indicate observation point and source point, respectively, and
the discretized values of sinv and cosv are given by

sinv; = Pin = P (33a)
d;
and ) .
cosv; = E‘—'HT——E'- (33b)
Next let

ng — % /dd’e—-]mtﬁﬁ(r) . /Vfg [Vg' . ZKg(tl)ejntﬁlq(rl)] G(l r— r/ |)dSI
n 5 n

- / dpe™m#p(x) - [ pat / a4V [V's - ;Kz(t')ew'a;(r')] G(r—r'1),
pg=torg. (34)
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Making use of the relationships [2, Appendix 2, 73. and 74.]

Vs B = LK O (350)

Vi [# 2] = {?Kx(t')ef""” (351)

y o (d1d : |
s[Vs TR ()] = ( ar 5 P K I+ jnss i d ikt (t’)]¢> e (350)

Vs [V § KE()e™] = ( : [K¢(t)

[
and (5),(28),(27a)-(27d), and (20), we obtain

K"’(t )¢ ) ad (35d)

It —]/d 0= o (p’ il oKt (t’)]) [sinvsinv'Gan(p, py 2 — 2') +cosvcos'Gin(p, p'y 2 — 2')]

+Jnsmv/dt — [P KL Ganlp, 2 — 2) (36a)

o dt’
¢t _ 1 v ! 7ot (4f s oyl [V |
"= /dt (p’ il P K, (t )]) sinv'Gsn(p, p', 2 — 2')

-n / dt'= p dt P KL ()Ganlp, plsz — 2) (36b)

Ke(t
/ dt'p'— [ a(t )] [sinvsinv'Gan(p, ¢,z — 2') + cosveosv'Gia(p, 0, 2 — 2')]

/
—n?sinv / dt’ t)ng(p,p z—2) (36¢)

and

Jnfdt’  — [ K )] sinv'Gsn(p, o',z — 2') — jn /dt —K2(t)Ganlp, 0,2 — 7).

(36d)

Before obtaining the contribution of I§? to [Z79] it is necessary to consider the derivatives

appearing in (36). The details of the derivative approximations will be treated in Section

2.9. For our purposes here it suffices to note that a quadratic Lagrangian interpolation

polynomial is used to obtain approximations for both the first and second derivatives. For
the first derivatives

p :
dar [ 'K, (t') Jer=t, Z +kPJ+kK Jt+k (37a)
and ) .
d |1 1
—_ __Kd’ / ~ ! K ¢ 37b
at’ [Pl ~() t=t; k§1 cg+kpi+’° it )




where we have denoted K (t;) and K2(t;) by K}, ; and Kf:j respectively. For the second
derivative

d2 / ! !
g PEaO] e, ™ 2 Gnbiik (38)
4 =1
Since d (1d 1 d? 1dp d
! / p /
7 (?Zl—t—' [2:4¢ )]) T [PKL(E)] - 7 ddr [PKL(#)] (39)

d 1 d 7 t I3 ) 1 1 " " 1 . 1 , ;
7 \ 7 g 1P Enlt ~— 3 pikKE i — 5 siny; ) CpiveKy 40
dt’ ( o dt’ [ ( )] yt; pj kgl jHkFI+ J+k p? ]kg—:l j+kFi+ Jtk ( )

where we have used (33) to approximate dp//dt'. In (37),(38), and (40), when j = 1, k is
summed from 0 to 2, and when j = M, k is summed from -2 to 0. Using the derivative
approximations (37), and (40) we then obtain the following contributions of the I2? to the

ZP7 matrices:

(2] ik = §d;p; [sin v; sin v;Gan(pi, pj> 2 — 2;) + 08 v; €08V Grn(piy P> 7 — %)

1 1, o 1
' (;—_c;"+kpj+k — zsin ”j0§+kﬂj+k) + jnsinvid;Gan(pi, pj» 2 = 2) 5 CGkPith (41a)
J J J

[th]2;i,j+k = —d;p; sinv;G3 . (pi, Pj» 2 — %j) (;Ec;-’ kPitk — ;%sin v;C; +kpj+k>
—nd;Gon(pis Pjs % — 25)Cj1kPi+k (41b)
[Z8)2.: j4k = —nd;p; [sinv; sin v;Gan(pi, pj 2i — zj) + cos v; cos v;G1,n(pi; Pjs 2 — ;)] c;+k—[)1f1;;
—n?sin vidjl—o%G;,,n(p,-, Pir % — 2j) k=0 (41c)
and
(28924, = —gnd;p; sinv;Gsn(pi, £js 2 — %) = jn2%j-G2,n(p,~, Pir % = %) (41d)

The index k in these expressions takes the values —1,0,1 for j = 2,3,---, M — 1, and the
values 0,1,2 and —2,—1,0 for j = 1 and j = M, respectively.
Next let

=1 [ dgeimtp(e). [ 15 [ﬁ(r') ZK,z(t'W'] a()G( r —r' |)dS’
n 5 "

= ‘-Z—;—:[ d¢e“5m¢f)(r) . /p’J’(t')dt'—/; d¢'Vfg . {Q(r') ;Kg(t’)ejn‘bl] ﬁ(r’)G(| r—r |),

p,g=torg. (42)
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Using (35a),(35b),(5),(28),(27¢),(27f), and (20) we obtain

)
(43a)
1 = - [ LKL NI) c0s0/Gonlpr 2~ 7) (430)

If=j / dt’%[p’Kf,(t’)]J(t’) [sinvcosv'Gan(p, ', 2 — 2) — cosusinv'Gua(p, £, 2

I = —n / dt'K2(t")J(t') [sinv cosv'Gan(p, 0,z — 2') — cosvsinv'Gia(p, p', 2 — 2)] (43¢c)
and
1% = ——jn/ dt' K2 (') J(t') cosv'Gan(p, 0, 2 — 2'). (43d)
Using the first derivative approximation (37) the corresponding contributions to the ZZ?
matrices are then ‘
[Z213;3,54k = 53 (t;)[sin v cos v;Gon(pis £y 21 — 2)
— cos v; 8in v;G1,n (i, 5, 2i — 25)1Cj1kPj+k (44a)
(285,506 = —d; I (t;) €08 V;Gan(pi, Ps, 2 — 25)CiynPivk (44b)
[Z8%]54.; = —nd; J(t;)[sin v; cos v;Gan (s, pj, 20 — 2;) — cosV;sin ;G (i, s, 2 — 2;)] (44c)

and
[Z2%)3,:,5 = —ind;J (t;) cosv;Gan(pi, P, 2i — 2)- (44d)

Finally let
Pq=_i [ —jmpa . t Al g\ ind’ aG('r"r’ |)»~ / /
=4 [ asemoe)- [y ae) Lo | T Daienas

z_lw —jme A . / ,‘" T Al q(4 'n¢'aG(|r_r,|)A /
. / dpe mep(x) - [ pt / 4V - [al) K)o 0,
p,g=tor¢. (45)
Using (33),(5),(28),(27¢),(271),(20), (26¢), and noting that
e Y
" =V'G(|r-r'|)-a{’) (46)
VG(lr-1'|) = al;ﬂc—gétl—e“jm(r -r), R=r—1 (47)

we obtain
d
It = —jk? / dt'?d—i;[p’Kf;(t')] [psinw cos? v’ Hy n(p, o', 2—2')—pcosvcos v’ sinv' Hyn(p, p', 2—2')

—sinwp' cos® v’ Hyn(p, o, 2 — ') + cosvp’ cos v/ sin v’ Hy n(p, p', 2 — 2')

—(z — 2)sinvcosv'sinv'Han(p, o', 2 — 2') + cosv(z — 2') sin? V' Hy n(p, 0, 2 — )] (48a)
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I =k /dt’ [0 KL () [pcos® ' Hsn(p, 0, 2 — 2') — poos® v Han(p, 0, 2 — 2')

dt'
—(z — 2') cosv'sinv'Hy n(p, p', 2 — 7)) (48b)
I8 = nk? / d K2(t')[psinv cos® v’ Hyn(p, 0/, 2 — 2) — pcosvcos v/ sinv' Han(p, p,z—2)
—sinwp cos? v/ Hyn(p, ', 2 — 2) + cosvp’ cos v’ sinv' Hyn(p, ', 2 — Z')

—(z — 2')sinvcosv'sinv'Hon(p, ', 2 — 2') + cosv(z — Z)sin? v Hyn(p, oz —2')]  (48¢)

and
I = jkzn/dt'K,‘f(t')[p cos?v'Hs n(p, ' 2 — 2') — peos® v/ Han(p, ', 2 — &)
—(z — 2') cos v sinv'Hs n(p, p', 2 — 2')]. (484d)
In (48)
Hy.(p,p,z—2)= / Hy(R) cos(ng')d¢’ (49a)
0
Hy,(p,p z—2)= / Ho(R) cos(ng¢') cos ¢'d¢’ (49b)
0
H3.(p, 0,2 —2") = / Ho(R) sin(ng') sin ¢'d¢’ | (49¢)
Hiplp, Py 2 — / Ho(R) cos(ng’) cos® ¢'d¢’ (49d)
0
Hsnlp gz —2) = / Ho(R) sin(ng') cos ¢’ sin ¢/dd’ (49¢)
_ 0
with 1+ jkR
= 2 IR o(—i

and R =| r —r' | given by (28). Using the first derivative approximation (37) the corre-
sponding contributions to the Z2? matrices are then

[Z8) 451,54k = —jk*d;[p;sinv; cos® v; Hyn(pi, pj, 2 — 2j) — pi COS V; Cos ¥j sin v;Hon(pi, Pjs 2 — 2;)
— sin v;p; cos? v; Han(pi, pj, % — 2;) + COS;pj cOSV; Sin v Hin(pis pjr 2% — 2;)
—(2i — ;) sin v; cos v; sin v;Han (03, P 2 — 25)
+ cosvi(zi — z;) sin® v Hy n(pi, pj» 2i — 23)IC1kPi+k (50a)
[th]4;i,j+k = kzdj [Pi cos® ’Usz,n(Pi, Dj> 2 — Zj) — Pi cos® 'UjH3,n(pi» P2 — zj)

—(z — ') cos v; sin v Han(pi, P> % — 25))C;kPi+k (50b)
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[ZZ¢]4;,-,,- = nk2dj[p¢ sin v; cos? v; Hy (i, pj, 2 — 2j) — pi cosv; cos v sinv; Hy n(pi, pjy 2i — 25)
— sinv;p; cos® v; Ho n(ps, pj» 2 — 2;) + cosv;p;j cos v; sinv; Hy n(ps, pj, 2 — 2;)
—(2:— z;) sinv; cos v; sinv; Ha n(pi, pj, 2i — 2j) +c0s vi(2; — 2;) sin® v; H1 n(pi, pj, 2 —2;)] (50c)

and
[22):5 = §k*nd;[p: cos® v; Hs n(pi, s, 2 — 2;) — pi c0s” v;Han(pi, £, 2 — 23)

—(2; — 2;) cosv; sinv; Hz n(pi, pj, 2i — 25)- (50d)

Equations (32), (41), (44), and (50) give the contributions of the four terms under the
integral sign of (18) to the Z2? matrices in (25) so that

1277 = (250 + (2772 + [28%)s + (2774, prg=torg. (51)

It is easy to see from (31), (49), (32), (41), (44) and (50) that

(Z%,) = [2})] (52a)
(Z%)1=-1Z1 (52b)
[2%,) = -2 (52¢)
and
[2%) = (22%). (52d)

2.5 Expressions for the Elements of the V' Vectors

Now that we have obtained detailed expressions for the elements of the Z matrices we turn
to the elements of the column vectors V¥ and V¢ in (25). Recall that the V vectors represent
the RHS’s of (18) multiplied by exp(—jn¢) and integrated with respect to ¢ from —m to =
and evaluated at the M points ¢t = ¢;, i = 1,2,---, M, and that the incident electric field is
given by (16) and (17) for TM and TE polarization, respectively. Then

Vrfiq = .—Zl(; / d¢e_jn¢f)(ti’ ¢) . kZO exP[kiM : r(tia ¢)]qinc’ p= tor ¢’ q= 0 or d) (53)

Using (26a) and (26b) it is simple to establish the unit vector relations

~inc

t.-0 = cos6"sinv(t) cos(¢p — ¢™°) — sin 6™ cos v(t) (54a)
¢-0™ = — cosf™sin(p — ¢"™) (54b)
t-¢™ = sinv(t) sin(¢ — ¢™) (54c)
and o ine '
@ ¢ =cos(p—¢™). (54d)

Also, using (15)

K" . r(t;, §) = —k(sin 0% + cos §7"°2) - (p; cos ¢ + p;sin ¢ + 2:2)
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= —kp; sin 6" cos ¢ — kz; cos 87 (55)
where as in Section 2.3 we have let p; = p(t;) and 2z; = 2(t;). Hence, recalling that it has
been assumed that ¢**° = 0, we then obtain from (53)

27
Vi = kel oo™ [cos 6" sinv; / d¢p cos gpe? (ki sin 0™ cos $nd)
0

27

— sin 87 cos v; / dped (ki sindne cos ¢""¢)] (56a)
0
2
V2 = — cos kel 0™ [ dpsin geltesn e en) (56b)
0
2
VY = ket siny; / dep sin gpe? (ki sin 07 cos =) (56¢)
0
and
) 2 ]
Vrfi¢ — kejkzi cos §*"¢ / d¢ cos ¢ej(lcpi sin 8*"€ cos ¢——n¢), (56d)
J ‘

where we have changed the limits of the ¢ integration to 0 to 27. Using the integral repre-
sentation for the Bessel function

. 27
() =L [t (57)
0

it is simple to obtain the integral representations

2n
[ singeE=#0dg = —n"{Jups (2) + Jo-a (2)] (582)
0
and
21
[ oos ettty = 271 13(0) = s (58b)
0
so that
V¥ = pjntig [cos 0 sin v;(Jpy1 — Jn—1) + 2 8in 6 cos 'u,-Jn] gk cos 0 (59a)
V2 = 157k cos 67 (Jpys + Jny)eiF5 0" (59b)
Vit = —mj"ksinvi(Jnps + Jno1)e™ cos ¢ (59c)
and

V= i k(g — Jng) e S0 (50d)
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where we have let

Jp, = Jp(kp;isin 67°). » (59e)
Using the Bessel function relation
Jn(2) = (=1)"Ju(2) (60)
it is easy to show from (59) that
Ve =V (61a)
Vo=V (61b)
V¥® = V¥ (61c)
and
Vi =V, ‘ (61d)

2.6 Calculation of the Current
To calculate the current on the BOR surface we refer to (19) and (24) and write

N

Kit,¢) = > ™Y [Kup()i(t ¢) + Kip(0)9(#)] (62)

n=-N
where ¢ = 0 (TM) or ¢ (TE) indicates the polarization of the incident electric field given

by (16) or (17), and (K, K?7) are the elements of the vectors (K%, K%9), obtained as the
solution of the matrix equation (see (25))

8 ] (] [ amosn

Letting $ = [p;(t), p2(t), - - - pn(t)] be the row vector of the pulse basis functions p;(t) defined
by (23) (we use the tilde to indicate the transpose of a column vector), (62) can be written
as
N
Ki(t,p) = Y & [KUi(t, ¢) + FKIB(9)] (64)
n=—N .

From (63), the relations (57) for the Z_,, matrices in terms of the Z, matrices, and the
relations (61) for the V_,, vectors in terms of the V,, vectors, it is simple to derive the
relations

K? =K% (65a)
K% = K% (65b)
K?, = -K% (65c)
and
K% = K%, (65d)
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(Note that (65b) and (65c) imply that K¢ = 0 and K& = 0.) Substituting (65) in (64) then
yields the expressions for the currents induced on the surface of the BOR by a TM and TE
linearly polarized incident plane wave, respectively:

N
K°(t, §) = PKYUE(t,¢) +2 Y [(FKY) cosngt + j(FKE) sin nod(¢)] (662)
n=1
and N
K9(t,¢) = FK§*d+2 3 [(FKY) sinngt(t, 6) + (FK3?) cosngeb(¢)] . (66b)
n=1

2.7 Calculation of the Far Scattered Field

In the far-field region the # and ¢ components of the scattered electric field can be obtained
from the vector potential A [10, p. 281]

E*(r) "R —jwA(r). (67)

Then with (3) and (5),
e—jklr—r’l

R (68)

ESC,P‘I(r) TR —]kZO /[Kq(rl) : f)]
S

where p : 8 or ¢, indicates the far scattered field component; P: 9far or &far, is the
corresponding unit vector (see Fig. 2); ¢ : 6 or ¢, indicates the polarization, 6 (TM) or
# (TE) of the incident electric field; K? is given by (64), r = (r,6f%",¢7%") is the far-field
observation point, and r' = (¢, ¢/, 2') is the source point on the BOR surface. In the far
field, | r — r' | in the phase of the Green’s function can be approximated by

|r—1 [%°r — o sin 67 cos(¢' — ¢7*") — 2 cos 6/ (69)
so that

~jkr o s ar ] ary st ar
847”. /[Kq(rl) . f)]e]kp sin 672 cos(¢' —¢' ) ik’ cos of ds’. (70)
S

Eeer(r) " —jkZ,

The relations (54) can be used directly to obtain

t.9™ = cos6 sin v(t') cos(¢’ — ¢°) — sin 67" cos v(t') (71a)
qAS’ 0™ = _cosofor sin(¢’ — ¢7°") (71b)
t. &far = sinv(t') sin(¢’ — ¢7°") (7T1c)
and ot far
& = cos(d - ). (14)
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Letting the elements of the vectors R and R¢” be defined by

RE =k [ i) (F - p)eis o/ oo/ i85 (120)
S
and
sz =k /pi (t’) (&' . ﬁ)e]k[p’ singfer cos(¢'-—¢f“")+z’cosOf‘"']ejn(:ﬁ’—qu“')dSI (72b)
5
with p = 6 or ¢, (70) together with (64) can be written as
sC,pq r—00 _ijOe—jkr il ingfer (Rtpyst D PP P
Erera(y) TR0 20— N I (RIPKY + RIPKY) (73)
dnkr =y

where, using (72) and the 27 periodicity of the ¢’ integration

2r
R = / dt’ p'p;(t) ek cos 8’ [cos 6" sin v(t') / dg' cos ¢/ el (k' sin67" cos ¢/ +ngf)
0

2r
— sin 67" cosv(t') / dep eI (ko' sin 67 cos ¢'+"¢')] (74a)
0
2w
RZ? — —cos 0k / dt,p,pi(t,)ejkz’ cosgfor / d¢l sin ¢Iej(kp' 5in 877 cos ¢’ +ng’) (74b)
0

2
R =k / dt'p'pi(t’ )ejkz'msofa' sinv(t') / d¢’ sin ¢'ed (ke sin67e cos ¢'+ng) (74c)
. 0
and

2
RZ:# =k / dt’plpi (tl) ejkz' cos gfer / d¢, COS ¢Iej(kp' sin 67" cos ¢’ +n¢') . (74d)
0

Comparing (74) with (56), replacing 6™ of (56) by 67" and —n of (56) with n, and using
the definition of the pulse basis functions, we then obtain

R® = 7" kd;p; [cos 07" sin v;(Jp41 — Jn1) + 24 sin 67" cos viJn] gikzicosoler (75a)

RZ? = —mj"kd;p; c0s 67 (Jpp1 + J ~1)6"'“""°’""'fm, (75b)
RY = wj™kd;p; sin v;(Jnqy + Jpor)e?*™ cos 647 (75¢)
and
RY? = " edipy(Jngs — Ty )eiF5 o0 (75d)
where

Jp = Jo(kp; sin 67°7). (75€)
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The relations (61) apply to the Rh7 as well, so that

R? .= R% (76a)
R%,=-RY (76b)
R%,=-R (76c)
and
R*. = R?. (76d)

Then, substituting (76) and (65) in (73) it is straightforward to obtain

56,00 (,.\ T—00 ijOe_jkr = 1070 N St01rt0 | Ty d01s 90 far
Bref(r) R 0 — |RYK] +23 (RYKY + REKY’) cos(ng™) (772)
n=1
—jkr N -
B (p) TR %72 > (RYKY + RYKY’) sin(ng’™) (77b)
n=1

r—00 kZOe—]kr
PO A

N
N togrtd 5 P01 dd\ o far
2 > (RUKY +RI'KS ) sin(ne’*") (77¢)

n=1

Esc,0¢ (r)
and

. —~jkr [ _ N . .
P _J__.__’“fi‘; - [Rg*f’m,’*'S +23° (RYKY + RIKH) cos(n¢f‘")] . (1)
n=1

The radar cross section o is defined as

2
vt 1 ,| EooP |
o?? = lim dmr | Einea |2

(78)

where p : 0 or ¢, denotes the component of the far scattered field, and g : 0 (TM) or ¢ (TE),
indicates the polarization of the incident electric field.

2.8 Choice of the Number of Fourier Modes for Expansion and
Testing Functions.

The ¢ dependence of the current given by (19) is expressed as a summation from —N to N
of the Fourier modes e/™®. The value of N can be set equal to the number of Fourier modes
sufficient to represent, to the desired accuracy, the ¢ variation of the tangential component
of the incident electric field on the surface of the BOR. Let a be the largest value of p of a
point (p, z) on the generating curve of the BOR. Then from (15), (16), and (17) it can be
seen that the ¢ variation of the incident field along the circle on the BOR corresponding to
the point (a, z) is given by

f(¢) = cos ¢ejkasin0"“°cos¢ or f(¢) — sin qbejkasine""ccosqb' (79)
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For axial incidence #"¢ = 0 and f(¢) equals cos ¢ or sin¢ so that only the e*® modes are
needed. For oblique incidence, we can express f(¢) as the Fourier series

N
F(@) = cne’™ (80a)
-N
with
. 1 27 ) .
e =5 [ F(@)e g (80b)
0
. from which, with (79) and (58),
lea |= % | Jusr(kasin6™) + J,_; (kasin6) | . (81)

As n increases beyond kasin 67, | J,,(kasin 8°) | decreases rapidly and it suffices to choose

N=I+M (82)
where .
I =Int[(1 + @)kasinf™], 0<a<k1 (83)
and M is the smallest integer for which
Jn(kasin 67)

. 84
Jr(kasingne) = € (84)
with € a small positive number depending on the desired accuracy. If the value of N given
by (82) is plotted as a function of Int[kasin 6**] the plot is found to be almost linear. For

€ = 0.005, for example, .
N = Int[1.04ka sin 6°"°] + 7. (85)

A similar expression
N = Int[k*(asin6) + A] (86)
with k* denoting a value a few percent larger than k was obtained by Yaghjian [11] for the

reciprocal problem of estimating the number of angular modes needed to represent the far
field of a radiator in the @ direction.

2.9 Approximation of Derivatives

To approximate the derivatives in (36), (43), and (48) we employ a quadratic Lagrangian
interpolation polynomial [12]. Recall that in (24) K% (t) and K?(t) were approximated using
pulse basis functions. The values of pK%(t) and (1/p)K2(t) at the discrete values t = ¢;,j =
1,---, M must then serve as the basis for approximating the derivatives. To do this we fit
quadratic polynomials ¢*(t) and ¢#(t) through three consecutive values of pK} and (1/p)K?
respectively:

(t —t;_1)(t —tj41)
t; — tj—1)(t; — tj+a)

(t —t;)(t — i)
~1 = t) (-1 — 1)
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t—t; 1) —1t;)
+pin KL (¢ (=1 ! 87a
pi1Knlts) (i1 — ti-1) (B2 — £5) (872)
and
1 (t—t;)(t —tjs1) 1 (t — tj—1)(t — tj1)
D+ — ¢ J I+ ¢ 3 j+
¢ (t) = — K3 (t;_ + —KS(t;
() pi-1 (t5-1) (tio1 — ) (-1 — tir1) P () (t; — ti-1)(t; — tj+1)
1 (t—ti-)(t — t5)
+—K2(t; 2 3, 87b
pi+i (i) (ti+1 — ti—1) (11 — £5) (870)
Then d d o; — (t; +ti41)
el t ~ —at(ts) = p; t(s. j —\Yj J+1
dt [pKn(t)]t=tj dt? (t;) = pi-1Kn(ti-1) (tj—1 — tj)(tj—1 — tj41)
%; — (tio + tis1 ;11 — (tj-1 +15)
40, KL (t) i —2 I+ pin KL ! ¢ ? 88a
pifalts) (G — )t — ti) (t51) (tj+1 — tj-1) (1 — £5) (820)
d [1 d 1 9%; — (t; + tir1)
-——Kf;t] ~ —q*(t;) = —K2(t;- R\ L A
dt [P ) =, G () Pi-1 (] 1)(tj—1 ~ t;)(tj-1 — tjs1)
1 2t; — (tj—1 +tjn1 1 i1 — (tjo1 + 1)
P ST i AU e e o RN ' (3 i1 — 1 T 88b
Pi ) (t —ti-1)(t — b))~ pina (t341) (tir1 — tj-1)(tia1 — B5) (8b)
and
d? d 2015 (tj-1) 2p; K1 (¢5)
— |pK? ~ —qt(ts) = J n\’J 3 n\"%j
d? [p2)] ity ™ gt ) (o1 — t) (i1 — i) (Gr — 1) (Ei1 — 25)
2pj+1Kfz(tj+1) (880)

(i1 —ti-1)(Eien — 1)
These approximations are of the form (37) and (38).

3 NUMERICAL RESULTS

The analysis presented in Section 2 was implemented in a FORTRAN computer program
which was then used to obtain numerical results for several different BOR’s. In this section
we show some representative results using the LEFIE to calculate scattering from a prolate
spheroid. The geometry of the spheroid is shown in Figure 4. The semi-major axis of the
spheroid is a and the semi-minor axis is b. For the calculations we show, ka = 20 and
kb = 10. The TM illuminating plane wave makes an angle of 45° with the major axis of the
spheroid. For these values of ka and kb no spurious resonances are encountered. (See end of
Section 2.2.)

The solid curve in Figure 5 shows the E-plane pattern calculated with the combined
field integral equation (CFIE) implemented in the computer code CICERO [13] using a
discretization of the spheroid generating curve of 40 points/A. The dotted curve in Figure
5 is the pattern obtained by solving the conventional EFIE with the Galerkin form of the
method of moments and overlapping triangle basis functions with a point density of 20
points/A. The dot-dashed curve and the dashed curve in Figure 5 are the patterns obtained
solving
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Figure 4: Geometry of the prolate spheroid.
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Figure 5: E-plane pattern of a prolate spheroid with ka = 20 and kb = 10 illuminated by a
TM plane wave incident at an angle of 45° with the major axis, as calculated by the CFIE
at a density of 40 points/), by the EFIE solved with overlapping triangle basis functions
at a density of 20 points/), and by the EFIE solved with pulse basis functions and point
matching with a density of 20 points/A and 80 points/A.




the conventional EFIE with pulse basis functions and point matching at point densities of
20 points/\ and 80 points/), respectively. We note that the CFIE and EFIE solved with
overlapping triangle basis functions yield results that agree closely, but the patterns obtained
with pulse basis functions and point matching are highly inaccurate. Moreover, these pulse
basis function patterns are not significantly improved upon by considerably increasing the
point density.

In contrast with the very poor results obtained when the conventional EFIE is solved
using pulse basis functions and point matching, in Figure 6 we show the spheroid patterns
obtained solving the conventional EFIE with the method of moments and overlapping tri-
angle basis functions with a density of 20 points/), and the patterns obtained by solving
the LEFIE with pulse basis functions and point matching at densities of 40 pointsA and 20
points/A. The LEFIE solved at a density of 40 points/A yields a pattern quite close to the
conventional EFIE pattern obtained at a density of 20 points/A. The LEFIE solved with a
density of 20 points/)\, however, has some pattern errors of approximately 1.5 dB. The point
density required to obtain results with the LEFIE comparable in accuracy to those obtained
with the conventional EFIE can be improved upon considerably by the stratagem of using
a higher point density for only a very small region — say A/4 — in the vicinity of the ends of
the spheroid generating curve, and a low point density elsewhere as shown in Figure 7. In
the LEFIE pattern shown in Figure 7 a density of 80 points/\ was used close to the ends of
the spheroid generating curve (i.e., the poles of the spheroid) and a density of 20 points/\
was used elsewhere. The reason why a high point density may be required at the ends of the
BOR generating curve is that the finite difference approximation of the derivatives used in
solving the LEFIE is less accurate at the beginning and end of the generating curve because
one-sided derivative approximations must be used there. Using a higher point density at the
ends of the generating curve compensates for the use of one-sided finite difference derivative
approximations. :

4 SUMMARY

Unlike the magnetic-field integral equation, the conventional form of the electric-field integral
equation cannot be solved accurately using pulse-basis functions and point matching. It
can be demonstrated that it is the highly singular kernel of the EFIE, rather than the
derivatives of the current, that precludes the use of the pulse-basis-function, point-matching
MOM. A new form of the EFIE has been derived whose kernel has no greater singularity
than the free-space Green’s function. This new low-order singularity form of the EFIE, the
LEFIE, has been solved for a perfectly electrically conducting body of revolution using the
pulse-basis function point-matching MOM, and a computer program has been written to
implement the solution. Derivatives of the current are approximated with finite differences
using a quadratic Lagrangian interpolation polynomial. This simple solution of the LEFIE
is contingent, however, on the vanishing of a linear integration term that appears when the
original EFIE is transformed to obtain the LEFIE. The vanishing of this linear integration
term restricts the applicability of the LEFIE to smooth closed scatterers without tips, edges,
or any other features that might result in a discontinuous or unbounded surface charge
density, its surface derivative, and the sum of the reciprocals of the principal radii of
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Figure 6: E-plane pattern of a prolate spheroid with ka = 20 and kb = 10 illuminated
by a TM plane wave incident at an angle of 45° with the major axis, as calculated by the
EFIE solved with overlapping triangle basis functions at a density of 20 points/A, and by
the LEFIE solved with pulse basis functions and point matching at a density of 40 points/A
and 20 points/A.
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Figure 7: E-plane pattern of a prolate spheroid with ka = 20 and kb = 10 illuminated
by a TM plane wave incident at an angle of 45° with the major axis, as calculated by the
EFIE solved with overlapping triangle basis functions at a density of 20 points/A, by the
LEFIE solved with pulse basis functions and point matching at a density of 80 points/A in
an interval of A\/4 at either end of the spheroid generating curve and 20 points/X elsewhere,
and by the LEFIE at a uniform density of 20 points/\.
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curvature, or a discontinuous unit normal vector to the surface. Bistatic RCS calculations
performed for a prolate spheroid demonstrate that results comparable in accuracy to the
conventional EFIE can be obtained with the LEFIE using pulse-basis functions and point
matching provided that a higher density of points is used close to the ends of the BOR
generating curve to compensate for the use of one-sided finite difference approximations of
the first and second derivatives of the current.
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